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Abstract

Finite deformation in the crack-tip zone of plastic deformation is

investigated for Mode-I opening of a crack in a thin sheet of elasto-plastic

material. The material obeys the von Mises yield criterion in the true

stresses, and the stretching tensor satisfies a flow law of the Prandtl-

Reuss type. Ic ompressibility and a state of generalized plane stress are

assumed. It is assumed that linearized elasticity applies outside the zone

of plastic deformation. On the crack line between the crack tip and the

elastic-plastic boundary, two distinct regions have been recognized: the

near tip zone and the intermediate region. In the near tip zone the fields

are controlled by the radius of curvature of the blunted crack tip. Here

the stress field has been approximated by classical plane stress results.

It has been assumed that the crack-line stresses may be taken as uniform

in the intermediate region. In each region, deformation variables have

been determined by the use of the constitutive relations, and the results

have been matched to the corresponding quantities in the neighboring region(s).

In thiL. manner expressions have been constructed for the deformation gradients

on the crack line, in terms of the distance to the crack tip in the deformed

configuration, the yield stress in shear and the stress-intensity factor of

linear elastic fracture mechanics.
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Introduction

It is difficult to include the effects of deformation induced geometry

changes in an analysis of stresses and deformations near a crack tip. For

plane-strain conditions, Rice and Johnson (1970) considered the modification

of elasto-plastic crack-tip stress and strain states due to crack blunting.

McMeeking (1977) and Rice et al (1979) used finite element methods to include

finite deformation in their investigations of crack-tip opening in elastic-

plastic materials. Finite deformations near a stationary crack tip in an

elastic solid have been investigated by Knowles (1977), Knowles and Sternberg

(1980, 1981), and Lo (1977), who used analytical methods.

In this paper we present an approximate analysis of the effect of finite

deformation on the crack-line fields for Mode-I opening of a crack in a thin

sheet of elasto-plastic material. Away from the crack tips the strains are

assumed to be infinitesimal, and the material behaves according to the theory

of linear elasticity. The zones of plastic deformation near the crack tips

are small as compared to the crack length (small-scale yielding). Finite

deformation is, however, taken into account in the near-tip plastic

deformation. The constitutive model for the elastic-plastic deformations is

a finite deformation version of the elastic perfectly-plastic solid, with the

Prandtl-Reuss flow rule and the von Mises yield condition. It is assumed

that the material is imcompressible, and that the stress state in the sheet

may be approximated by generalized plane stress.

We consider a crack which, in the reference state, is defined by X1 < 0,

X = 0. The crack faces remain free of surface tractions. In the deformed

configuration the stress-equations of equilibrium have the same form as for

the corresponding small strain theory. It is assumed that stressing of the

sheet gives rise to a blunted crack tip profile of smoothly varying radius

of curvature, whose maximum value is reached on the crack line. We focus on
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the fields near the crack line, and we consider a near-tip zone and an

intermediate region in between the near-tip zone and the elastic-plastic

boundary. In the near-tip zone the fields of stress and deformation should

be greatly affected by the radius of curvature of the blunted crack tip. In

this zone we use a classical stress field that has been applied previously

to a sheet containing a circular hole and for a sheet with an edge notch,

see Kachanov (1971). This field is axially symmetric. In the intermediate region

we assume uniform crack-line stresses. It is to be expected that the actual

stresses near the crack line will develop a dependence on the polar angle

in the transition from the essentially axisymmetric field very close to the

blunted tip to the uniform field in the intermediate region. For simplicity

we have,however, assumed that the axisymmetric field remains applicable until

it can be matched to the uniform stresses in the intermediate region. The

choice of the stress-field in the intermediate region is shown to be consistent

with a slip-line field proposed by Thomason (1979).

When the stress fields have been chosen, the crack line deformation can

be analyzed by the use of the constitutive relations. The deformation gradients

can be solved rigorously in the near-tip zone in terms of a single function

of the crack-tip radius, whose form is subsequently determined by matching

deformation variables to corresponding ones in the intermediate region. In

the latter region the crack-line deformation is analyzed by following the

method discussed by Achenbach and Dunayevsky (1984) and Achenbach and Li (1984).

The solution is completed by matching the intermediate-region results to the

P deformation gradients at the elastic-plastic boundary.
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The principal results of the paper are expressions for the deformation

gradients in terms of the distance to the crack tip in the deformed con-

figuration, the yield stress in shear and the stress intensity factor of

linear elastic fracture mechanics. It is shown that x 2/ X2 is singular

at the crack tip, while 3x l/X vanishes at that point.
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1. Governing Equations

The reference and current positions are defined by postion vectors

X and x, respectively. In the current configuration the equilibrium equation

is

divT = 0 , (1.1)

where T is the Cauchy stress. In this paper, the spatial derivatives are

with respect to x unless stated otherwise. The constitutive model that is

being considered is a large deformation version of the elastic perfectly-

plastic solid, with the Prandtl-Reuss flow rule and the von Mises yield

criterion. In addition it is assumed that the material is incompressible.

The yield condition is represented by

T'.T' = 2k2  , (1.2)

where k is the yield stress in pure shear and T' is the stress deviator

defined by

V = T - I trT , (1.3)

3- -

Here I and tr stand for the unit tensor and the trace, respectively. When

(1.2) is satisfied, we use an incremental constitutive equation of the type

D + I) + AT' (1.4)

The elastic part of D is represented by

Del 1 

(

~ =2 (T + P)(1.5)
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Here D represents the stretching tensor, which is defined by

I[7v + (v)T , (1.6)

where v is the particle velocity:

x

y = =C (X(x,t),t) (1.7)

The dot symbol denotes the material time derivative. In (1.4) and (1.5)

p defines the indeterminate pressure, A a positive multiplier, and the 0

symbol defines the Jaumann rate:

0

T = T - WT + TW, (1.8)

where

2[V - (v)T] T (1.9)

It should be noted that there is some controversy over the choice of

stress rate in rate-type constitutive equations, see e.g. Lee et al (1983) and

Dienes (1979). If one wishes to rewrite a small deformation constitutive

equation of rate type into its large deformation counterpart just by replacing

the small deformation stress rate by an objective stress rate, it is,to the present

authors' opinion, generally inadvisable to use the Jaumann rate. This is

because W is not a measure of the rate of rotation of a material point. Indeed,

it is not difficult to find a deformation gradient F which is symmetric positive

definite (rotation - free with regard to polar decomposition), but with non-zero

W. Actually

F = Q(t)F QT(t) (1.10)
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provides such an example, where Q(t) is a time dependent orthogonal tensor,

and F(# yI, y = const.) is a symmetric positive definite constant tensor.

From the physical point of view, it seems that in the constitutive equations

(1.4) and (1.5) , Dienes' rate, Dienes (1979), is a more reasonable choice

than Jaumann's rate. In the present analysis, however, the use of Jaumann's

rate is acceptable because the principal axes of stress do not rotate

significantly. In addition, Jaumann's rate is much easier to handle than

other rates. These are the reasons for using (1.4) and (1.5) here.

The pressure p can be eliminated from (1.4) and (1.5) by using the

condition of incompressibility

div v = 0 . (1.11)

By taking the trace of (1.4) or (1.5) we obtain

1 0

3= - tr T (1.12)

which in turn reduces (1.4) to

= (T - I tr T) + AT' (1.13)

In the present paper we will discuss the deformations of a thin cracked

sheet of uniform initial thickness h. As in the corresponding small

deformation theory, one can facilitate the analysis by using the generalized

plane-stress assumption. To see the implication of this assumption we

introduce a Cartesian coordinate system with its x3 = 0 plane coinciding

with the mid-plane of the undeformed sheet. Under the assumptions that the
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deformation is symmetric with respect to the mid-plane, that the 1st Piola

Kirchhoff stress does not vary significantly throughout the thickness, and

that the planer faces are free of loads, Knowles and Sternberg (1983) showed

that

T 3 = T3a = 0 F 3a = F a3 = 0 T 33 = 0 (1.14 a,b,c)

hold on x3 = 0, where Greek indices stand for either I or 2. If (1.14 a)

holds not just on x3 = 0 but in its vicinity, we may reduce (1.1) to its

2D version, i.e.,

T =0. (1.15)

This equation and (1.2) constitute the governing equations for the stress

components. It is noted that the same equations govern the stress dis-

tributions in the theory of small-strain plane-stress plasticity. Therefore,

we may utilize some known results from that theory. Another implication of

the plane stress assumption is that

V = v = 0, (x3 
= 0). (1.16)

3,c cx,3

With this result and the constitutive equations (1.13), we can determine

the velocity field in the mid-plane.



2. Crack-Line Stresses

We start with the observation that the equilibrium equation (1.15) and

the yield condition (1.2) have the same form as for small deformation theory,

except that in the present context the stress is referred to the x position

(after deformation). Therefore the classical plane stress analysis for

stresses applies to the present problem, but with the boundary conditions

imposed on deformed boundaries.

It is assumed that the crack tip will blunt into a curve S which has a

root radius whose magnitude attains its maximum value a on the crack line.

For small polar angles, we may then approximate S by a segment of a circle

C of radius a.

At this point, we recall some formulas from the classical theory of plane

stress plasticity, see e.g. Kachanov (1971), pp. 262-272. A set of principal

stresses

T I = 2k cos(w - T), T2 = 2k cos(w + 1 (0 < W < r) , (2.1a,b)

satisfies the yield condition (1.2), where w is a parameter. When

7/6 < _j< 5/6, the equilibrium equation becomes hyperbolic. The equations

for the characteristics and the corresponding integrals are:

a - characteristics

dx2- tan(-) , - = const , 
(2.2a,b)

dx1

- characteristics

dx.,
=x tan(+ ,) , + = const , (2.3a,b)
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where ¢ is the angle between the T and x directions,

1 1 coto
M = ) f - - arccos --- ) , (2.4)

and

= - f (3-4cos2
C)

2 d . (2.5)
2) = ff6 sing

With regard to the crack-line stresses, one would expect that the

stress right near the tip is affected by the traction free boundary S,

while the stress away from the tip (but still within the plastic zone)

will not be all that different in form from those for the corresponding

small-strain crack problems. This would suggest that we should approximate

the crack-line stresses by using two fields: one for the immediate vicinity

of the crack tip, and another for the intermediate region between the near-

tip zone and the elastic-plastic boundary.

2.1 Stresses in the near-tip zone

Let A and B be points on S between which C and S do not differ significantly,

see Fig. 1. Also, let D be a domain surrounded by the arc AB, and two

characteristics defined by (2.3) and (2.2), emanating from A and B. It is

reasonable to approximate S between A and B by C . Then the stresses in D

are found as solutions of the equilibrium equation (1.15) and the yield

condition (1.2) subject to

Tr = 0, Tre =0 on r = a , (2.6)

where T , T,, and T -stand for the components of T referred to the polar
r r

• . . .. • , - ° .



coordinate system (r,e) which has its origin at the center of C. Due to the

hyperbolicity of the governing equation, T vanishes identically within V, and

T and T show axisymmetry. The solution to this problem appears in standardre

textbooks of plasticity in connection with the extension of a sheet with a

circular hole. We record the following results from Kachanov (1971):

r 2 v / 3 e'3 (/3-w)
a 2sinw e (2.7a)

Tr = 2k cos (w + , T7 = 2k cos (w - I) (0 < W < 7/3) . (2.7b,c)

2.2 Crack-line stresses in the intermediate region

Two Mode-I near-tip stress distributions have been proposed for the

small-deformation plane-stress case in an elastic perfectly-plastic material.

Hutchinson (1968) proposed a stress field which corresponds to the system of

characteristic curves shown in Fig. 2. He also showed that this distribution

can be obtained as the limit for a certain non-linear elastic material as

the stress-strain curve becomes flat. In the loading zone ahead of the crack

tip the stresses are

11 = k cos 30, T22 = k(2cos 39 + 3sin 2ecosO), T12 = -k sin 3. (2.Sa,b,c)

The crack line stresses are T k, T22 = 2k and TI) = 0. The latter

results also follow from (2.1), since it can be deduced from (2.2)-(2.4) and Fig. 2

that the crack line is a characteristic curve with . = 7/6.

Thomason (1979) proposed a class of stress fields which include the

Hutchinson field as a special case. The system of characteristic curves is



F(a) = a (5.11)
F1

Substitution of (5.11) into (3.28) - (3.30) completes the desired

relations on the crack line in the near-tip zone, a < x < <a. In the

intermediate region, <a < x 1 < x , we find from (5.11), (5.7) and (3.28)

XI = 1F- (x - va/) (5.12)
F 11

By using (4.13), (5.2), (5.1) and the previously computed result for

C(t), the expression for v2, 2 becomes

V / 3A 1 (- a + x °  2 a 6 (5.13)

For <a < x1 < x , (4.14) then takes the form

jx2 P -qx [1/a-i/G (x )- = F(x )[a/G (xo ) e 0 (5.14)
X2 0 0

where

3(1+6) 
- 2/3<26p = (5 .15 )

KL (1-6)

v'3 (1+6 (5.16)
<3 (1-6)

and

G(x
* r 0

G (x) = f dt (5.17)

0

The function G (x ) may be selected in a convenient manner since ((>: is arbitrary,
0 0

see also the footnote under Eq.(4.12).

• " . . ." . - °-- .'- • . . , - . 4 - . •. • - . . .-
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x= F(x /.) (5.7)0

Differentiation of this expression gives

x2  0 , <a < x I < x : - (5.8)
S 1  p x F'(x /n)

1'X 0

where x I  x x defines the elastic-plastic boundary.
P

At the elastic plastic boundary the deformation gradients are F and F2,

i.e.,

(X , 32) = (FI,F2) (5.9)

It can be shown that both 'x X and 3x /'X are continuous across x, = x . The

uniformity of T and T22 in the intermediate zone also implies that F1 and

F2 depend on k and the elastic constants only, i.e. F1 and F2 are independent

of a. Equations (5.8) and (5.9) then give the relation

SX- v/3a/<)

at x = x: F'I- = (5.10)p r) . F 1 '

where (5.4) has also been used. The argument of F'(.) depends on a, but the

right-hand side of the equation is independent of a. It then follows that

F(.) is either linear in its argument, or the argument is constant. The

latter case would be x - 73a/- = constant. Since the plastic zone should
P

vanish as a 0, the constant must be zero, implying x < a, which is
P

unacceptable. Hence (5.10) can only give a linear relation for F(.). The

integration constant has been set equal to zero, because x 0 as a . 0.

P
If we would take a as the argument wc can write



5. Matching of Solutions

It may be assumed that the particle velocities as well as their

derivatives with respect to x2 are continuous at x I = Ka on the crack line.

It then follows from (3.18a) and (4.3b) that for Ka < x < Xp x 2 = 0

V3.
V 1 =- <a (5.1)Vl K

Equations (4.4b) and (3.18c) yield

v - .i i (5.2)
13 2

The function C(t) follows by matching (4.6) to (3.18b). Equation (4.6)

may then be written as

/3A 1+6 2/3 A 6
v2, 2  K 1 - 6 K2 a  1-6 (5.3)

With (5.1) and the assumption that a = 0 at t = 0, we may rewrite

(4.9) as

x = x ---- a , (5.4)
o 1 K

and hence (4.8) becomes

X1 = X (x - i3a/<) (5.5)

Continuity of X1 at x= <a then yields the identity

F(a) = X (na) , n = K - /3/K , (5.6a,b)
0

where (3.28) and (5.5) have been used. Equations (5.6a) and (5.5) now

imply
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- *

Here F and G are arbitrary functions, and v 2,2(s,x ) follows from (4.6)

and (4.9) as

s

v = - Vl (s) ( J Vl(t)dt + x ) + C(s) (4.13)2,2(Xo 0 i-6 1,22 0 1

From (4.11) we conclude that on the crack line

3x 2  h(t,x)
2= F(xo ) e (4.14)

In the next section the functions v (t), V1,22(t), xo (xt), C(t), F(xo ), X (x )

and G(x ) will be determined by the use of appropriate matching conditions.
0

One of these functions is actually redundant, but the form (4.11) is
convenient for later use.
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or

v - - (t)x + C(t) (4.6)

1, T-6 '1,22 1

where 6 is defined by (3.11), and C(t) is an arbitrary function.

With these results, one can relate X to x. Indeed, since X 0 0, we

have

M1 + v -- = , (4.7)
t i xI1

where we have used that v2 0 on the crack line. Equation (4.7) yields

X, = X (x o ) , (4.8)

where X is an arbitrary function and x is defined by

t

x0 = x1 - f v1 (s)ds. (4.9)
0

To determine an expression for x 2/;X 2 on the crack line, we use

(/Dx 2 )(X2) = 0 , to obtain

t / V , x 2_ v 2- ,2 v 2  ( 4 . 1 0 )
x2 'xl 2

where we have used that v 0 and X2  0 on the crack line. The solution

to (4.10) is

___2 i -h(t ,X )
X e 

(4.11)
2 o

where

t

h(t,: = f v 2  (s,x )ds. (4.12)
G(x) ,2 o

0
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4. Crack-Line Deformation in the Zone of Uniform Stress

Next we investigate the crack-line displacement gradients away from the

tip, in the region where the stresses are defined by (2.10), i.e.,

TII = k and T22 = 2k. We essentially follow the procedure proposed by

Achenbach and Li (1984).

Substitution of (2.10) into (1.8) and (1.3) gives near the crack-line:

T (v, 2 - v2,1 k 0 0 (4.1a)

0 0 0

0°°° 1
T'=0 k 0 .(4.1b)

0 0 -k

Equation (1.13) then yields

D=!-(v 2 -v ) -k 0 0 + A 0k 0 (4.2)' 0 0k 0) +0 -k 0)

Since D - 0, we have on the crack line

= 0 , or vI 
= vl(t) (4.3a,b)

Equation (4.3a) also holds near the crack line, and hence we may write for

x 2  =0, < a < x I

= 0 or v1 2 2 = v 22(t). (4.4a,b)v I , 2 2 1' ,2 2 1 , 2 2

In the same manner (P/ x2)D 1 2 yields for x = 0, a < x I

(1+6) v, 2 2 = - (1- vl (4.5)
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Equation (3.25) implies

R = F(ae- g ( )) , (3.27)

where the functional form F(-) will be determined in the sequel. Since

the displacement is radial it follows from (3.27) that

x
X - ,F(aj-(P) (3.28)et r

where g(p) is defined by (3.26). Differentiation of (3.28) yields

X 1 6 x~xB x Px-8p e-()
C±= 1 -2x)F(ae- g (p)) + -g)(ae- g ( p ) )  

(3.29)
3x r ( rx r 2  p-f (p)

On the crack line at r = Ka we have

X1 K-f(K) _ _X2  a 3X 1 X 2 0 (3.30a,b,c)

1 X2 2 X
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Equation k3.13) or (3.15), together with (2.7a) and (3.4a),determine the

velocity field near the tip.

We next determine the relation between x and X. ro this end, we note

that

SR SR
R v - = 0 (3.19)

holds, where

R = (X X . (3.20)

Equation (3.19) implies that R = const on

dx

dt a , VO(3.21)

or

dr (3.22)
da f(p)

where we have used (3.4a,b) and changed the independent variable from t to

a. It is more convenient to use P = r/a instead of a in (3.22). Noting the

relation

da 1 dr r (3.23)
P p dp

we transform (3.22) into

dr - f(P) r (3.24 )

do p[p - f(p)]

which integrates to

r/r (R) = p e g(P), (3.25)

where r (R) is an arbitrary function of R, and
0

g(p) f d_ ¢ (3.26)
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where (3.4a) has been used. The exact solution to (3.10) and (3.12) can

easily be written out:

e-t/23 =W2 [-sin(w-7/3)li - 6e" /,3 1 (W) (3.13)

21')-2(sinw)12 tcos (w-7 / 3) 1'

where

/3 _

I(W) = f6 e(3.14)
1 cos (-1/Y -sin( -TT/3)]

Uhen 5 is small, which is usually the case, this solution reduces to

-7/2/,/- w3/2
f() e e

(2/v) ( (3.15)

This expression satisfies (3.12). At the boundary of the near-tip zone,

i.e. for w = /6 and r = <a we find

f(w = 7/6) - f(p= K) = 3/ K , (3.16)

where K is defined by (2.9).

Equation (3.15) together with (2.7a) and (3.4a) determines the velocity

field in the near-tip zone. For future reference we list the following

results, which follow from (3.4a,b) :

a f(P) va - f' (P)z-f (C) (3.17a,b)2,2 a p-1,22 a p2

Using the result (3.16) we find at r =a :

v/'iA /3 ,"34.
= ' v2 2  ' v 2 3 - (3.18a,b,c)

2,2 KK a 3,
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Since W vanishes identically, we have

T =T a- T +vj -T (3.5)

By the use of (3.5), (3.4 c-f) and (1.13) we obtain equations for 3v /3r
r

and v r/r. Subsequent use of (3.4) reduces these equations to

f'(p) - [f(p)-P](2T' - T) Tr - .T)(3.6)

6u r 3

P L [f(p)-pI(-T' + 2T;) + X (. e-sTr (3.7)

In (3.6) -(3.7), a prime denotes a derivative with respect to P.

Elimination of A from (3.6) and (3.7) yields after some additional

manipulation

2T -T T'T -TIT
f,(P) - r e f(P) + I r r e [f(p)-p] o . (3.8)

2T -T r 2 i 2T 0-Tr

According to (2.7a), p and wi are related by

Tr/2V -wv'/2
eiJ - e (3.9)
2 '3) ' (sinw)

Elimination of p from (3.8) by the use of (3.9) then yields

dfk [co s (w±/ 3) + (/3 f = (/) (3.10)
+ L snw coT:-2,T/3)cos (w-T )

where

6 = k/2 (3.11)

The boundary condition (3.3) on r =a reduces to

f(7/3) =1 ,(3.12)
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3. Crack-Line Deformation in the Near-Tip Zone

In this Section the displacement gradients are determined on the crack

line in the near-tip zone defined by a < x1 < Ka. First we analyze the

velocity vector v by integrating (1.13) with an appropriate condition at

r = a. Since we have assumed that near the crack line the deformed crack-

tip boundary may be approximated by a circular segment of radius a, we have

x x a (3.1)

The components of the particle velocity then satisfy

v x = aa , on = a , (3.2)

but are arbitrary otherwise. To simplify the analysis we assume that v is

radial, i.e.,

v =-x on lxl =a. (3.3)
Ct aa

Then, the velocity field inside the material also becomes radial due to the

hyperbolicity of the governing operation. This justifies the introduction of

the following forms:

Vr = A f(P) , vo = 0 , (3.4a,b)

T T(p) , Te  T (p) T rO= 0 (3.4c,d,e)r re e eO

A =- X(p) ,(.f
a

where = r/a , r = /(x x ), and f(p) and X(p) are functions of p, and

T r(P) and T (p) are the stress components computed from (2.7b,c).
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reason we have selected the Thomason field for the intermediate region.

As discussed earlier, however, the apex angle a of uniform field has to be small.

It can be shown that the point A', where the solution (2.7) is connected to

a uniform field, has an x1 coordinate smaller than Ka. Since the system

of Fig. 4 reduces to that of Fig. 5 in the limit of a + 0 we may assume

that the x1 coordinate of A' can be approximated as Ka for small a.

Accordingly, one may say that the stress near the crack line beyond A' is

uniform and approximately equal to

T = k T22 =2k for x1 > Ka, 1x2 1 - small. (2.10)

In summary, we will use (2.7) for a < x1 < Ka, and (2.10) for

Ka < xI < x , where x is the x coordinate of the elastic-plastic boundary

on the crack line.

o-
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analytical methods. Consistent with the approximate nature of the present

analysis, we will use the simple 'extension' stated above.

To discuss the matching of the stress fields more closely, we examine

in a qualitative manner how the characteristics of the fields away from the

tip can be combined with those of the near-tip region. Figures 4 and 5

show such combined systems of characteristics for the Hutchinson and Thomason

fields, respectively. To the left of the characteristics merging at points A

and A' the stress field given by (2.7) is assumed to develop, while we

assume Hutchinson's and Thomason's field to the right in Figs. 4 and 5,

respectively. In Fig. 4 the crack line is characteristic to the right of

point A. Hence the upper and lower characteristics merge at A without slope

discontinuity, thus forming a cusp at point A (which, it may be noted, has

an x coordinate of Ka). From this observation, we may infer (and can prove)

that the stress at point A has essentially the same mathematical structure as

the Hutchinson field (Fig. 2) has at its origin (the crack tip). This con-

sideration and the analysis by Achenbach and Li (1984) then suggest that the

system of characteristic lines shown in Fig. 4 lead to an anomalous

deformation having a singularity at A. The details will not be given here,

but they can be shown by using the same method as reported in the sequel.

Since a deformation singularity at A would be unacceptable we are left with

the system of Fig. 5. Due to the presence of the uniform field to the left

of the point A' the two characteristics merging at A' will not form a cusp,

and, hence, will not cause an unacceptable singularity there. For that

.............................................



shown in Fig. 3. The essential difference with Fig. 2 is in the presence

of a uniform field in a wedge-like region occupying 0 < 6 < a. Away from

this wedge-like region the two fields are essentially the same. Indeed,

the field of Fig. 3 reduces to that of Hutchinson as a tends to zero. For

reasons which will be discussed shortly, we will adopt this solution for the

intermediate region, but we will assume a small value for a. Such a choice of

a will make the overall stress field close to Hutchinson's prediction which,

as noted earlier appearsto agree with other calculations,Hutchinson (1968).

_• In fact, the uniform field in the wedge-like region differs only slightly

from T k, T2 2  2k when a is small.

2.3 Matching of stress fields

In order to obtain a complete picture of the crack-line stresses, we have

to match the stress fields in the near-tip zone to the ones in the intermediate

region. The simplest way of achieving this is to extend the near tip solution

(2.7) until the condition T1 1 = k, T 22 = 2k is met. Equation (2.7a) shows

that this condition is satisfied at

r 2 V3) --- = K = (/3 e7/ ) = 2.07 (w = 7/6) . (2.9)
• a

One would, of course, expect that T will develop dependence on 0 in the transition

from the essentially axisymmetric field very close to the tip to the non-

axisymmetric one away from the tip. It is beyond the scope of the present

paper to analyze this transition rigorously, because this would require

more information on the near tip deformation than can be obtained by
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Figure 6 shows the elastic-plastic boundary in the x1-a plane. The "a"

coordinate of the intersection of this curve and the line defined by (5.4) on

which x = constant, defines a function of x . We shall choose this function
0 0

for G (xa) in (5.14). Since this construction of G yields

G (x 0 a (5.18)

on the elastic-plastic boundary, we find from (5.9) and (5.14) that

F(x) F 2  (5.19)

Continuity of ax2/aX2 at xI = Ka gives by the use of (3.30b), (5.11)

and (5.14)

F p*p-i e q9 = ( ,ha e qna/G (na) (5.20)F2 G(na))

It follows from (5.20) that

G (pa) = Y , (5.21)
na

where y is the root of the equation

p-1 eqn F I _ /p-Fl2 =  -p q/ (5.22)

Hence, we have

G = x0. (5.23)
o o

Equations (5.14), (5.19) and (5.23) then determine )x2 / X? in <a < x < x as

2

x2  o a YX

_X-- = F2  -e ( . (5.24)

2

S

. . . . . . . . . . . . .
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6. Results

On the crack line the near-tip region corresponds to a < xI < Ka,

where K is given by (2.9): K = 2.07. Equation (3.28) relates X to x by

-g = n g(p)

XI = F(ae-g(p)) F= -ae-g (6.1)
1

where (5.11) has been used and g(p) is defined by (3.26). Here p should be

interpreted as p x 1 /a, and n is given by (5.6b). For x, = Ka, (6.1) yields

XI = na/F At x = a we have p = 1 and (6.1) yields XI = 0, because

f(l) = 1, and hence g(p) [f'(1)-l-l Zn(p-1) as p 1, which implies

exp[-g(p)] - (p-i)2 / 3 as P + 1, because (3.9) and (3.10) give f'(1) = -.

The crack-line stresses in the near-tip zone are given by (3.4c,d) and

(2.7b,c). Thus,

0 < X1 < na/F I , or a < xI < <a:

T 1 = 2kcos(w + 7/6), T22 = 2kcos(w-7/6) , (6.2a,b)

where 1/6 < w < 7/3 , and according to (2.7a) x and w are related by

(x)2 = /3 e 3 ( - / 3 -
( ) (6.3)

a 2 sin-,

The deformation gradients on the crack line follow from (3.29):

3xI  FI
1 1 g(Q)- =- [Q-f(p)]e (6.4)X1

2 1 eg() (6.5)

DX2 n
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At x I = a, x 2/9X 2 is singular, but x /X vanishes.

The intermediate region is defined by Ka < xI < x . The corresponding

range of X follows from (5.12) as na/F X I < (Xp-/3a/<)/F I " The crack-

line stresses in the intermediate region are given by (2.10). Thus

na/F I < X I < (x p-/3/K)/F I  or a < x I < xp

T = k , T22 = 2k (6.6a,b)

From (5.12) we conclude

x
I1

-i =  F , (6.7)
1X

while x2 2 is given by (5.24).

The computation of numerical results requires the evaluation of the

integral in (3.26), where f(p) follows from either (3.13) or (3.15) and

(2.7a). The precise evaluation of the integral, which is not difficult

numerically, may not be worth the effort considering the approximate nature

of the present analysis. Hence, we will simplify the analysis by using

the approximate formula (3.15) for f. In addition it is found that the

Hermitian interpolation f of f

f = -L(p-l)(p 2+C1 P + C2 ) + p , (6.8)

is a sufficiently accurate approximation for f, where
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C= 2{ - 4K 2 
- (1-3/3)K +V31, (6.9a)

2 - 5K + 4/3

C = 3K4 - 7K 3 + 6/3K - 2/3 (6.9b)
K 2 5K + 4/3

L = 3 (6.9c)

2(1+C 1+C2)

It is noted that this approximation will predict the correct singularity

for deformation gradients at the crack tip because of the use of Hermitian

interpolation. Indeed, as was seen earlier, the singularity of Dx/DX is

determined by the derivative of f at p = 1. Also, it is evident, from (3.8),

that the singularity of x/3X does not depend on 6. This observation serves

as another justification for the use of (3.15). With f replacing f in

(3.2t,), we obtain

I.X = FIL i_)(pl /3(+lP-O 2 0

13R 2
=,X - [(K-l)2(p.-l)] p~~ + C2 )" --P-To (6.10)

X2) F 1  2/3 (K-Wo 2

2 P 0

where

-Cl+i (4cC 2 -2 CI+2

1o 2 1 o + i 1 1 . (6.12a,b)3 (4C 2
3 4 2 -CI)- 61ab

21

We also have

X3 (6.13)

- --. --.. , ,. --
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Hence we have

x 2  pa
2 =(6.14)

aX2 X1

Further simplifications may be introduced when 6 = k/2p << 1. Then

F 1 + 0(6) 1 1 , p - 3/K
4 - 0.16, q = /3/K 3  0.19. (6.15a,b,c)

1,2

With these constants, (5.22) gives

y = 0.321. (6.16)

This result, (5.4), (5.23) and (5.18) yield x = 3.95a andP

from (5.12), we see that the material in the range 0 < X < 3.12a will be

in plastic zone. Plots of the deformation gradients on the crack line

for 6 = 0 are given in Fig. 7.

Finally, we can make an estimate of a in terms of the stress intensity

factor "I of linear elastic fracture mechanics by equating the plastic zone

sizes predicted by the present theory and existing small strain theories.

Small strain theories predict that the length of the plastic zone x isP

given by

x = c K2/k2  (6.17)

p I

where c = 7/24 0.13 according to the Dugdale model, and c = 2/'2/97T 0.10,

according to the analysis Achenbach and Dunayevsky (1984). By equating (6.17)

to x -a = 2.95a and X = 3.12a respectively, we obtainP P

2 k2ckl c kl

a - and a c (6.18a,b)
2.95 k2 3.12 k2

. ... - - - . ,.. k k . ,.,, . o _ . , . - . . . , ' . "" -i. ' ? ''':'', '''i
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x2 a

Fig. 1 C ack tip 
geo etr

Fig I Crc-i geometry
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a/

Fig. 2 Characteristic curves for Hutchinson's field. Point
0 corresponds to the crack tip.

Fig. 3 Characteristic curves for Thomason's field. Point 0
corresponds to the crack tip.
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Fig. 4 Characteristic curves for crack-tip zone and intermediate
region, with Hutchinson's field in intermediate region.

X I

Fig. 5 Characteristic curves for crack-tip zone and intermediate
region, with Thomason's field in intermediate region
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X0  X1

Fig. 6 Elastic-plastic boundary in xl-a plane.
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Fig. 7 Deformation gradients versus x /a
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